PEG-coated gold nanoparticles attenuate β-adrenergic receptor-mediated cardiac hypertrophy

نویسندگان

  • Yuhui Qiao
  • Baoling Zhu
  • Aiju Tian
  • Zijian Li
چکیده

Gold nanoparticles (AuNPs) are widely used as a drug delivery vehicle, which can accumulate in the heart through blood circulation. Therefore, it is very important to understand the effect of AuNPs on the heart, especially under pathological conditions. In this study, we found that PEG-coated AuNPs attenuate β-adrenergic receptor (β-AR)-mediated acute cardiac hypertrophy and inflammation. However, both isoproterenol, a non-selective β-AR agonist, and AuNPs did not induce cardiac function change or cardiac fibrosis. AuNPs exerted an anti-cardiac hypertrophy effect by decreasing β1-AR expression and its downstream ERK1/2 hypertrophic pathway. Our results indicated that AuNPs might be safe and have the potential to be used as multi-functional materials (drug carrier systems and anti-cardiac hypertrophy agents).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice.

Gold nanoparticles (GNPs) are attracting more and more attention for their great potential value in biomedical application. Currently, no study has been reported on the chronic cardiac toxicity of GNPs after repeated administration. Here we carried out a comprehensive evaluation of the chronic cardiac toxicity of GNPs to the heart. Polyethylene glycol (PEG) -coated GNPs at three different sizes...

متن کامل

β-Adrenergic receptor stimulation causes cardiac hypertrophy via a Gβγ/Erk-dependent pathway.

AIMS Activation of the β(1)-adrenergic receptor and its G protein, G(s), induces cardiac hypertrophy. However, activation of classic Gα(s) effectors, adenylyl cyclases (AC) and protein kinase A, is not sufficient for induction of hypertrophy, which suggests the involvement of additional pathway(s) activated by G(s). Recently, we discovered that βγ subunits of G(q) induce phosphorylation of the ...

متن کامل

Cardiac pressure overload hypertrophy is differentially regulated by β-adrenergic receptor subtypes.

In isolated myocytes, hypertrophy induced by norepinephrine is mediated via α(1)-adrenergic receptors (ARs) and not β-ARs. However, mice with deletions of both major cardiac α(1)-ARs still develop hypertrophy in response to pressure overload. Our purpose was to better define the role of β-AR subtypes in regulating cardiac hypertrophy in vivo, important given the widespread clinical use of β-AR ...

متن کامل

Microdomain switch of cGMP-regulated phosphodiesterases leads to ANP-induced augmentation of β-adrenoceptor-stimulated contractility in early cardiac hypertrophy.

RATIONALE Cyclic nucleotides are second messengers that regulate cardiomyocyte function through compartmentalized signaling in discrete subcellular microdomains. However, the role of different microdomains and their changes in cardiac disease are not well understood. OBJECTIVE To directly visualize alterations in β-adrenergic receptor-associated cAMP and cGMP microdomain signaling in early ca...

متن کامل

Protective Role for LPA3 in Cardiac Hypertrophy Induced by Myocardial Infarction but Not by Isoproterenol

Background: We previously reported that lysophosphatidic acid (LPA) promoted cardiomyocyte hypertrophy in vitro via one of its G protein-coupled receptor subtypes, LPA3. In this study, we examined the role of LPA3 in cardiac hypertrophy induced by isoproterenol (ISO) and myocardial infarction. Methods:In vitro, neonatal rat cardiomyocytes (NRCMs) were subjected to LPA3 knocked-down, or pretreat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017